WP2: CMEs, shock waves, and their radio diagnostics (A. Nindos, B. Vrsnak)

Monday, June 13

Coronal Mass Ejections, Associated Shocks and their Interactions with the Ambient Medium
M. Pick, G. Stenborg, P. Zucca, P. Demoulin, A. Lecacheux, A. Kerdraon

Triangulation of the Continuum-like Radio Emission in a CME-CME Interaction Event
J. Magdalenic, M. Temmer, V. Krupar, C. Marque, A. Veronig, B. Vrsnak

Interplanetary Type IV Bursts (POSTER)
A. Hillaris, C. Bouratzis, A. Nindos

Open Discussion on the Nature of Radio Emission of CMEs and Shocks
(moderator: A. Nindos)

Tuesday, June 14

First observation of a solar type II radio burst below 50 MHz with the tied array beam mode of LOFAR
P. Zucca, D. Morosan, P. Gallagher, F. Richard, A. Rouillard, J. Magdalenic, K.-L. Klein

A Special Solar Type II Radio Burst Observed with LOFAR

Studying the Characteristics of Shock Waves Associated with CMEs Using Solar Radio Bursts (POSTER)
K. Alielden, A. Mahrour

Observations of Near-Simultaneous Split-Band Solar Type-II Radio Bursts at Low Frequencies (POSTER)
H. Krishnan, R. Ramesh, C. Kathiravan

Open Discussion on Formation and Propagation of CME-driven Shocks
(moderator: B. Vrsnak)

WG2 Conclusions
ABSTRACTS

Coronal Mass Ejections, Associated Shocks and their Interactions with the Ambient Medium
Monique Pick 1
1LESIA, Observatoire de Paris \ Observatoire de Paris \ France
Abstract
M. Pick, G. Stenborg, P. Zucca, P. D_emoulin, A. Lecacheux, A. Kerdraon
LESIA, Observatoire de Paris, CNRS, UPMC Univ. Paris 06
This presentation is a contribution to the understanding of the role of the coronal environment in the development of CMEs and of the associated shocks. This study has benefited from multi-wavelength imaging observations and radio spectral data over a large frequency range. We selected events launched far from the local vertical direction and we followed step by step their progression from the low corona into higher altitudes, detected in white light. The availability of images from a combination of EUV imagers in quadrature combined with radio imaging observations allowed us to identify the successive complex interactions (e.g., compression, reconnection) between the CMEs and the ambient medium. For one event, the CME resulted from the interaction of an eruptive jet with the surrounding medium; the progression of this CME was closely associated with the occurrence of two successive type II bursts from distinct origins. Two other events originating from their source in the north hemisphere, underwent a large deflection in the low corona and finally emerged in the southern hemisphere following with a radial direction. We shall briefly discuss the potential implication of this results for space weather purposes.

Triangulation of the continuum-like radio emission in a CME-CME interaction event
Jasmina Magdalenic 1, Manuela Temmer2, Vratislav Krupar3,4, Christophe Marques, Astrid Veronig2, and Bojan Vrsnak6
1Royal Observatory of Belgium \ Brussels, Belgium
2IGAM, Institute of Physics, University of Graz \ 8020 Graz, Austria
3Imperial College London \ United Kingdom
4Institute of Atmospheric Physics CAS \ Czech Republic
5STCE - Royal Observatory of Belgium (STCE - ROB) \ Brussels, Belgium
6Hvar Observatory, Zagreb University \ Croatia
Abstract
We present a study of the radio emission associated with the complex interaction of two coronal mass ejections (CMEs), successively launched from the same active region (NOAA AR 11158), on February 14 and February 15, 2011. Although this CME-CME interaction event was widely studied (e.g. Temmer et al., 2014, Maricic et al., 2014, Mishra & Srivastava, 2014) none of the analyses determined the origin of the associated continuum-like radio emission observed in the decameter-to-hectometer frequency range. The continuum-like emission patch has a particular morphology and might be considered either as a continuation of the decametric type II radio emission associated with the second CME, either as a continuation of the type III radio bursts associated with an event from NOAA AR 11158. This ambiguity additionally complicates the question on the possible origin of the continuum-like emission. The association of this type of continuum-like radio emission and the CME-CME interaction was up to now established only by their temporal coincidence (Gopalswamy et al., 2001), which is not applicable in this event due to a complex and long-lasting interaction of the CMEs. The radio triangulation study (see also Magdalenic et al., 2014) provided us with the 3D source positions of the continuum-like emission and the associated type II burst, which were compared with the positions of the interacting CMEs. First results indicated that the continuum-like radio emission is not the continuation of the type III radio bursts, but it is also not the radio signature of the CME-CME interaction.
A special solar type II radio burst observed with LOFAR

Frank Breitling1, Richard Fallows2, Gottfried Mann3, Christian Vocks4, Mario Bisi5, Peter Gallagher6, Alain Kerdraon7, Jasmina Magdalenic8, Alec Mackinnon9, Helmut Rucker10, Alexandre Konovalenko11, Christophe Marque12, Eduard Kontar9, Bartosz Dabrowski13, Andzej Krankowski13, Hamish Reid9, and Bo Thide14.

1Leibniz-Institut f"ur Astrophysik Potsdam (AIP) \{ An der Sternwarte 16, 14482 Potsdam, Germany \\
2Netherlands Institute for Radio Astronomy (ASTRON) \{ Netherlands \\
3Leibniz-Institut f"ur Astrophysik Potsdam (AIP) \{ Germany \\
4Leibniz-Institut f"ur Astrophysik Potsdam (AIP) \{ An der Sternwarte 16, 14482 Potsdam, Germany \\
5STFC - Rutherford Appleton Laboratory (RAL Space) \{ United Kingdom \\
6Trinity College, Dublin (TCD) \{ Ireland \\
7Observatoire de Paris \{ Leisa \{ France \\
8Royal Observatory of Belgium (ROB) \{ Belgium \\
9University of Glasgow \{ United Kingdom \\
10IWF Graz \{ Austria \\
11Institute of Radio Astronomy \{ Ukraine \\
12Royal Observatory of Belgium \{ Belgium \\
13University of Warmia and Mazury in Olsztyn \{ Poland \\
14Uppsala University \{ Sweden \\

Abstract

On March 16, 2016, a special type II radio burst was observed in the frequency range 20-80 MHz with LOFAR. The type II burst shows the typical fundamental-harmonic structure. Because of the high sensitivity of LOFAR, the 3rd harmonic was measured. Additionally, a lot of herringbones were observed in both the fundamental and harmonic band. A preliminary evaluation of the burst is presented.

First observation of a solar type II radio burst below 50 MHz with the tied array beam mode of LOFAR

Pietro Zucca1, Diana Morosan2, Peter Gallagher2, Fallows Richard3, Alexis Rouillard4, Jasmina Magdalenic5, and Karl Ludwig Klein6.

1Laboratoire d’\textit{études spatiales et d’instrumentation en astrophysique} (LESIA) \{ Université Pierre et Marie Curie [UPMC] - Paris VI, Observatoire de Paris, INSU, CNRS : UMR8109, Université Paris VII - Paris Diderot, Université Pierre et Marie Curie (UPMC) - Paris VI \{ 5, place Jules Janssen 92190 MEUDON, France \\
2Trinity College Dublin [Dublin] \{ , College Green, Dublin 2, Ireland, Ireland \\
3Netherlands Institute for Radio Astronomy (ASTRON) \{ Postbus 2, 7990 AA Dwingeloo, The Netherlands., Netherlands \\
4Institut de recherche en astrophysique et planétologie (IRAP) \{ CNRS : UMR5277, Observatoire Midi-Pyr_en_ees, Université Paul Sabatier - Toulouse III \{ 9 Avenue du Colonel Roche, 31028 Toulouse Cedex 4, France \\
5Royal Observatory of Belgium \{ Brussels, Belgium \\
6Laboratoire d’\textit{études spatiales et d’instrumentation en astrophysique} (LESIA) \{ Université Paris VI - Pierre et Marie Curie, Observatoire de Paris, INSU, CNRS : UMR8109, Université Paris VII - Paris Diderot \{ 5, place Jules Janssen 92190 MEUDON, France \\

Abstract

Type II radio bursts are evidence of shocks in the solar atmosphere emitting radio waves ranging from metric to kilometic lengths. These shocks may be associated with coronal mass ejections (CMEs) reaching super-Alfvenic speeds. Radio imaging of the decameter
Studying the Characteristics of Shock waves associated with CMEs using solar radio bursts. (POSTER)

Khaled Alielden,1 and Ayman Mahrous,2
1Space Weather monitoring Center (SWMC) { physics department, Faculty of science, Helwan University, Ain Helwan, Cairo, Egypt
2Director of Space Weather monitoring Center (SWMC) { physics department, Faculty of science, Helwan University, Ain Helwan Cairo., Egypt

Abstract
Fast CME/shocks propagating in the Corona and the interplanetary medium can generate metric and kilometric Type II radio emissions at the local plasma frequency and/or its harmonic, respectively. So these radio emissions provide a means of remotely tracking CME/shocks. We apply analysis technique, using the frequency drift of metric spectrum obtained by ground station e-Callisto (Compound Astronomical Low cost Low frequency Instrument for Spectroscopy and Transportable Observatory) in Space Weather Monitoring Center (SWMC) { Helwan University, and estimated by using electron density model the propagation speed of CME/shocks in the corona, and the km-TII spectrum obtained by the WIND/WAVES experiment, to infer, at some adequate intervals, the propagation speed of CME/shocks in the interplanetary medium. We applied this technique on _ve CME/shocks. We combine these results with previously reported speeds from coronagraph white light and interplanetary scintillation observations, and in-situ measurements, to study the temporal speed evolution of the _ve events. The speed values obtained by the metric and km-TII analysis are in a reasonable agreement with the speed measurements obtained by other techniques at di_erent heliocentric distance ranges. The combination of all the speed measurements show a gradual deceleration of the CME/shocks as they propagate to 1 AU. This technique can be useful in studying the evolution and characteristics of fast CME/shocks when adequate intervals of km-TII emissions are available.

Observations of Near-Simultaneous Split-Band Solar Type-II Radio Bursts at Low Frequencies (POSTER)

Hariharan Krishnan,1, Ramesh R2, and Kathiravan C
1Indian Institute of Astrophysics (IIAp) { Indian Institute of Astrophysics II Block, Koramangala, Bangalore 560 034, INDIA, India

Abstract
We report ground-based radio spectral and polarimeter observations of two successive split-band Type-II bursts that occurred on 20 February 2014 at low frequencies (less than 100 MHz) in association with a solar coronal mass ejection (CME). The temporal interval between the onset of the two bursts was very small, _ one minute. Both of the bursts exhibited fundamental{harmonic structure. The coronal magnetic_eld strength [B] in the upstream region of the associated magnetohydrodynamic (MHD) shock, estimated from the split-band observations, is in the range B _ 1.3{1.1 G over the radial distance [r] interval
r_1.49 \{ 1.58 \text{ R for the first Type-II burst, and B_1.3\{1.0 \text{ G over r_1.49 \{ 1.64 \text{ R for the second Type-II burst. Based on the results obtained, we show that the first and second Type-II bursts in the present case were likely due to MHD shocks generated by the near-simultaneous interaction of two event regions of the aforementioned CME with a preceding CME and a pre-existing coronal streamer.

Interplanetary Type IV Bursts (POSTER)

Alexander Hillaris, Costas Bouratzis, and Alexander Nindos

1Department of Physics, University of Athens \{ GR-15783 Athens, Greece
2Physics Department, University of Ioannina \{ Ioannina GR-45110, Greece

Abstract

We study the characteristics of moving type IV radio bursts which extend to the hectometric wavelengths (interplanetary type IV or type IVIP bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprised 48 Interplanetary type IV bursts observed by the Wind/WAVES in the 13.825 MHz-20 KHz frequency range. The dynamic spectra of the RSTN, DAM, ARTEMIS-IV, Culgoora, Hiraiso and IZMIRAN radiospectrographs were used to track the evolution of the events in the low corona; these were supplemented with SXR flux recordings from GOES and CME data from LASCO. Positional information for the coronal bursts were obtained by the Nan_cay radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs and SXR arcs. The majority of the events (45) were characterized as compact; their duration was on average 106 min. This type of events were, mostly, associated with M and X class arcs (40 out of 45) and fast CMEs; 32 of these events had CMEs faster than 1000 km/s. Furthermore, in 43 compact events the CME was, possibly, subject to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (3) of long lived type IVIP bursts was detected, with durations from 960 min to 115 hours. These events are referred to as extended or long duration events and appeared to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal type IV bursts. The latter were found to persist on the disk, for tens of hours to days. Prominent among them was the unusual Interplanetary Type IV Burst of 2002 May 18-23 which is the longest event in the Wind/WAVES catalog. The 3 extended events were, usually, accompanied by a number of arcs, of GOES class C in their majority, and of CMEs, many of which were slow and narrow.